VISUALIZATION TECHNOLOGIES IN WORLD RESEARCH
DOI:
https://doi.org/10.28925/2414-0325.2020.9.13Keywords:
visualization; digital visualization; types of digital visualization; graphics; graphic image; data; researchAbstract
Every year the amount of information increases significantly, particularly in education, and at the same time, the possibilities of digital tools utilization for processing it changes. Scientific progress, virtualization and automation of many processes have a beneficial effect on this, and therefore there is a need for their processing and accounting, which entails an increase in computing power and data rates. The continuous flow of information is a necessary condition for the existence of modern civilization and the reason for the overload with information and media activity consciousness, which provoked the emergence of a new type of thinking based on the clip perception of messages. A person from all the variety of information grasps the brightest fragments that appeal to his consciousness and thus forms a chain of levels of information perception "image - title - text - understanding", where the information's visual component acts as a link from one to another and provides information connection. The visual component of information (visualization), based on certain associations, stereotypes of thinking, conveys the essence of significant event, fact, phenomenon, process, important for a person in time and space. Visualization is the most important step in the data analysis process. It helps to present research results in a simple and clear form, often serves as a key factor for decision-making in various fields. Although many people associate digital visualization with linear graphs and tables exclusively, in reality it is a big concept, a system of transmitting complex ideas, patterns and data through visual images. The analysis of the notions "visualization", "information visualization", "graphic image", "graph" is performed in the article. Varieties and methods of digital visualizations by different researchers are analyzed. The methods of digital visualization by Swiss researchers, who presented them in the form of a periodic table, are described. The main types of digital visualizations with examples and their possible application are described in detail.
Downloads
References
Білоусова Л. І., Житєньова Н. В. Компоненти готовності майбутніх учителів природничо-математичних дисциплін до застосування технологій візуалізації у предметно-професійній діяльності. Наукові записки Тернопільського національного педагогічного університету імені Володимира Гнатюка. Серія: Педагогіка. 2018. № 3. С. 80—87. URL: http://nbuv.gov.ua/UJRN/NZTNPU_ped_2018_3_12 (дата звернення: 17.10.2020).
Структурно-логічні схеми. Таблиці. Опорні конспекти. Есе. Навчальні презентації: рекомендації до складання: метод. посіб. для студ. / уклад.:
Л. Л. Бутенко, О. Г. Ігнатович, В. М. Швирка. Старобільськ, 2015. 112 с.
Селіванова О. О. Основи теорії мовної комунікації. Черкаси: Чабаненко Ю. А., 2011. 350 с.
Eppler M. J., Lengler R. Towards a periodic table of visualization methods. Proceeding GVE '07 Proceedings of the IASTED International Conference on Graphics and Visualization in Engineering. 2007. P. 83—88. URL: https://dl.acm.org/doi/10.5555/1712936.1712954 (date of access: 17.10.2020).
Wilke C. O. Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. USA: O'Reilly Media Inc, 2019. 390 p. URL: https://clauswilke.com/dataviz/ (date of access: 18.10.2020).
Zelazny G. Say It With Charts: The Executive’s Guide To Visual Communication. 4th ed. McGraw Hill Professional, 2001. 225 p.
What is Data Visualization and Why Is It Important?. URL: https://www.import.io/post/what-is-data-visualization/ (date of access: 16.10.2020).
Robertson G., Card S., Mackinlay J. The cognitive coprocessor architecture for interactive user interfaces. Proceedings of UIST, the ACM SIGGRAPH Symposium on User Interface Software and Technology. 1989. P. 10—18.
Bounegru L., Chambers L., Gray J. The Data Journalism Handbook. USA : O'Reilly Media, 2012. 242 p. URL: https://datajournalism.com/read/handbook/one (date of access: 18.10.2020).
Feldman R., Sanger J. The Text Mining Handbook. Cambridge University Press, 2009. URL: https://doi.org/10.1017/CBO9780511546914 (date of access: 17.10.2020).