HIGH-SPEED COMPUTER POLARIMETER BASED ON CMOS MATRIX
DOI:
https://doi.org/10.28925/2414-0325.2023.151Keywords:
computer polarimeter, CMOS, SchoolKit, ColorKitAbstract
Under the conditions of the COVID-19 pandemic and a full-scale war in Ukraine, the lack of computer equipment for conducting online chemical experiments is experienced. In connection with the implementation of the New Ukrainian School and the development of STEM education, there was an urgent need to develop domestic educational computer equipment.
The Department of Physics and Chemistry of H.S. Skivoroda’s Kharkiv National Pedagogical University is developing the SchoolKit software-methodological complex (PMK), which is based on three universal software tools: ColorKit, ChemKit, SoundCardScientificKit. When creating applications, only free software is used, which ensures low cost and, accordingly, accessibility for a wide range of users. A computer polarimeter was developed based on the ColorKit software. A new principle of polarimeter operation is proposed, which is based on computer processing of the image that occurs when optically polarized light is passed sequentially through an optically active solution, a transparent plate with internal tension, and an analyzer. A high-speed computer polarimeter based on a CMOS matrix was developed, a working model was manufactured and tested. The device differs from others since it uses a fundamentally new way of processing visual data and does not contain any mechanical components and polarization modulators. It is also easy to manufacture, and quite reliable. The polarimeter software allows data to be accumulated in the form of tables and displayed in real-time graphical form.
The computer polarimeter was used for two years during laboratory classes in the “Mechanisms of Organic Reactions” subject, including online mode. In particular, it was used to experimentally determine the constants of acid hydrolysis of sucrose at different temperatures, concentrations of acid and sucrose. Visual display of measurement results, stability of device operation and good reproducibility of experimentally obtained data allow intensification and/or optimisation of the education process due to the automation of polarimetric measurements. After some improvements and validation, the device is planned to be used in scientific research.
Downloads
References
Linchevsjkyj, I. V., Ponomarenko, L. P., & Chursanova, M. V. (2023). Moduljacijna poljarymetrija (yzd. KPI im. Ighorja Sikorsjkogho). Kyjiv.
Zabolotna, N. I., Sholota, V. V., & Kolivoshko, A. I. (2018). Analiz metodiv ta system lazernoji poljarymetriji dlja vidtvorennja anizotropnykh parametriv biologhichnykh shariv. Biomedychni Optyko-Elektronni Systemy Ta Prylady, 60-71.
Rovyra, R. U., Tuzhanskyj, S. E., Savenkov, S. N., Pavlov, S. V., Chunykhyna, E. Y., Kolomyec, Y. S., & Klymov, A. S. (2014). Metod y poljarymetrycheskaja systema lokaljnoj dyfferencyacyy patologhyj anyzotropnikh byotkanej. Fotobiologhija ta fotomedycyna (3,4), 113-119.
Hough, J. (2006, June). Polarimetry: a powerful diagnostic tool in astronomy. Astronomy & Geophysics, 47, 31-35. https://doi.org/10.1111/j.1468-4004.2006.47331.x
Stam, D. M., Hovenier, J. W., & Waters, L. B. (2004, December). Using polarimetry to detect and characterize Jupiter-like extrasolar planets. Astronomy & Astrophysics, 428, 663-672. https://doi.org/10.1051/0004-6361:20041578
Camara, C. A. (2021). Construction of a Low-Cost Polarimeter For Educational Purposes. Quimica Nova, 44(3), 361-365. http://dx.doi.org/10.21577/0100-4042.20170661
Mehta, A., & Greenbowe, T. J. (2011, August). A Shoebox Polarimeter: An Inexpensive Analytical Tool for Teachers and Students. Journal of Chemical Education, 88, 1194-1197. https://doi.org/10.1021/ed1011635
Crisp, M. G., Kable, S. H., Read, J. R., & Buntine, M. A. (2011). A disconnect between staff and student perceptions of learning: an ACELL educational analysis of the first year undergraduate chemistry experiment 'investigating sugar using a home made polarimeter'. Chemistry education research and practice, 12, 469-477. https://doi.org/10.1039/C0RP90015J
Shavitz, R. (1978). Easily Constructed Student Polarimeter. Journal of chemical education, 55, 682. https://doi.org/10.1021/ed055p682
Tumerman L.A. (1974). Patent No. #374972. SSSR.
Utkin, G. I. (2001). Compact turbopolarimeter. In M. Pluta (Ed.), Lightmetry: metrology, spectroscopy, and testing techniques using light, 4517, pp. 153-157. https://doi.org/10.1117/12.435966
Kudrjavcev, V. Y. (1946). Patent No. #65654. SSSR.
Vorobiev, D., Ninkov, Z., & Gartley, M. (2014). Polarization in a snap: imaging polarimetry with micropolarizer arrays. In D. B. Chenault, & D. H. Goldstein (Ed.), Polarization: measurement, analysis, and remote sensing xi, 9099. https://doi.org/10.1117/12.2053164
Myhre, G., Hsu, W.-L., Peinado, A., LaCasse, C., Brock, N., Chipman, R. A., & Pau, S. (2012, December). Liquid crystal polymer full-stokes division of focal plane polarimeter. Optics express, 20, 27393-27409. https://doi.org/10.1364/OE.20.027393
Vidjmachenko, A. P., Ivanov, Ju. S., & Synjavsjkyj, I. I. (2015). Rozrobka poljaryzatora zobrazhuvaljnogho poljarymetra na osnovi poljaryzacijnykh plivok. Kosmichna nauka i tekhnologhija, 21(4), 19-23.
Dereniak, E. L. (2013). Novel imaging spectrometers and polarimeters. In O. V. Angelsky (Ed.), Eleventh international conference on correlation optics, 9066. https://doi.org/10.1117/12.2049315
Saito, N., Odate, S., Otaki, K., Kubota, M., Kitahara, R., & Oka, K. (2013). Proceedings of spie. Wide field snapshot imaging polarimeter using modified Savart plates, 8873. San Diego. https://doi.org/10.1117/12.2022829
Wang, R., Zhou, J., Zeng, K., Chen, S., Ling, X., Shu, W., . Wen, S. (2020, January). Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect. Apl photonics, 5, 016105, 7p. https://doi.org/10.1063/1.5131183
Dereniak, E. L. (2014). Proceedings of spie. From the outside looking in: Developing snapshot imaging spectro-polarimeters, 9186. San Diego. https://doi.org/10.1117/12.2063979
Rozrobka stenda z doslidzhennja poljaryzacijnykh efektiv (2020). (M. O. Maslov, Trans.) https://openarchive.nure.ua/items/32ae9a2f-2d3b-4423-9d73-d319737c8ed2
Vinnik, A., Komisova, T., & Kratenko, R. (2021). Development of schoolkit software. Electronic Scientific Professional Journal “Open Educational E-Environment of Modern University”, (11), 32–48. https://doi.org/10.28925/2414-0325.2021.113
Kiatronics (2012). 28BYJ-48 – 5V Stepper Motor. Cherrywood Tauranga New Zealand: Welten Holdings Ltd - Specifications subject to change without further notice. From https://www.vernier.com/files/manuals/chem-pol.pdf
Vernier. (Beaverton). Chemical Polarimeter (Order Code CHEM-POL) (2012). Vernier Software & Technology. https://www.vernier.com/files/manuals/chem-pol.pdf
Vernier. (2023). Polarimeter (Chemical). (Vernier). https://www.vernier.com/product/polarimeter-chemical
Brazuelo, L., & Hong, W. (2020). Kinetics of sucrose inversion at 20C by polarimetry. https://www.researchgate.net/profile/Laura-Brazuelo/publication/343970485_KINETICS_OF_SUCROSE_INVERSION/links/6115993f1ca20f6f861b574b/KINETICS-OF-SUCROSE-INVERSION.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Vynnyk O., Granovska T., Kratenko R.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.