КОМП’ЮТЕРНА ОБРОБКА ВІЗУАЛЬНИХ ДАНИХ У НАВЧАЛЬНИХ DIY ПРОЄКТАХ
DOI:
https://doi.org/10.28925/2414-0325.2024.161Ключові слова:
комп’ютерна обробка візуальних даних, DIY, спектрофотометр, рефрактометр, колориметр, поляриметр, ColorKitАнотація
Проаналізовано програмні засоби для обробки візуальних даних у навчальному хімічному експерименті, досвід їх застосування та ряд DIY (Do it Yourself – зроби сам) проєктів розроблених на їх основі. Особлива увага звертається на роль саморобних пристроїв під час вимушеного онлайн навчання обумовленого COVID-19 та повномасштабною війною в Україні.
Викладено результати розробки програмного засобу ColorKit (кафедра фізики і хімії ХНПУ імені Г.С.Сковороди); висвітлено базові принципи, описано інтерфейс, основні функції застосунку та області їх використання, принцип дії модулів: «Спектрофотометр», «Колориметр», «Рефрактометр», «Поляриметр». Розглянуто особливості будови розроблених викладачами, здобувачами вищої освіти та учнями членами МАН оптичних комп’ютерних пристроїв для фізико-хімічного аналізу, висвітлено результати їх апробації.
Описано конструкцію абсорбційного спектрофотометра на основі відбивної дифракційної ґратки виготовленої із DVD-диску; запропоновано новий спосіб його калібрування з використанням розчину діамантового зеленого. Апробовано діючу модель та встановлено, що точність пристрою достатня для демонстраційних та навчальних хімічних експериментів.
Розглянуто принцип дії модуля «Колориметр» програмного засобу ColorKit. Показано, що на відміну від інших програмних засобів, він має влаштовані засоби апроксимації. Завдяки цьому суттєво полегшується обробка візуальних даних; виведення результатів математичної обробки у графічному вигляді, а це відповідно робить експеримент більш наочним. Звертається увага на необхідність правильного налаштування драйверу відеопристрою для коректної роботи віртуального спектрофотометра та колориметра в режимі реального часу.
Наведено ряд оптичних схем рефрактометрів розроблених на основі програмного засобу ColorKit: з рідинною та V-призмами; пристрою принцип дії якого ґрунтується на зміні оптичних властивостей лінзи, що контактує з розчином. Показано, що одночасне відображення ходу променів та результатів математичної обробки забезпечує високий рівень наочності. Викладено результати апробації LED DIE рефрактометра з V-призмою. Намічено подальші перспективи розвитку проєкту ColorKit.
Завантаження
Посилання
Shidiq, A. S., Permanasari, A., Hernani, & Hendayana, S. (2021). The use of simple spectrophotometer in STEM education: A bibliometric analysis. Moroccan Journal of Chemistry, 9, 290-300.
https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i2.27581
Forbes, P. B. (2016). Seeing the light: The SpecUP educational spectrophotometer. In G. G. Gregory (Ed.), Optics Education and Outreach IV. 9946, p. 99460Z. SPIE. https://doi.org/10.1117/12.2235680
Scheeline, A., & Kelley, K. (2010). Teaching, Learning, and Using Spectroscopy with Commercial, Off-the-Shelf Technology. Applied Spectroscopy, 64(9), 256-267. https://doi.org/10.1366/000370210792434378
Theremino System. The real modular in out. (Theremino) February 1, 2024. https://www.theremino.com/
Noethling, J. A., & Forbes, P. B. (2014). Shedding the light on spectrophotometry: The SpecUP educational spectrophotometer. In M. F. Costa, & M. Zghal (Ed.), 12-th Education and Training in Optics and Photonics Conference, 9289. https://doi.org/10.1117/12.2070728
Theremino Spectrometer Construction. Theremino System. 2 February, 2024. https://www.theremino.com/wp-content/uploads/files/Theremino_Spectrometer_Construction_ENG.pdf;
Theremino Spectrometer Technology. January 5, 2024.
https://www.theremino.com/wp-content/uploads/files/Theremino_Spectrometer_Technology_ENG.pdf
Bruininks, B., & Juurlink, L. B. (2022, May). An Inexpensive 3D Printed Periscope-Type Smartphone-Based Spectrophotometer for Emission, Absorption, and Fluorescence Spectrometry. Journal of Chemical Education, 99, 2168-2174. https://doi.org/10.1021/acs.jchemed.2c00060
Koohkan, R., Kaykhaii, M., Sasani, M., & Paull, B. (2020, December). Fabrication of a Smartphone-Based Spectrophotometer and Its Application in Monitoring Concentrations of Organic Dyes. ACS OMEGA, 5, 31450-31455. https://doi.org/10.1021/acsomega.0c05123
Castellannos, A. R., Castellanos, H. E., & Alvarez-Salazar, C. E. (2022). arXiv:2201.07110v1 [physics.ed-ph]. Using homemade spectrometers to perform accurate measurements of discrete and continuous spectra, 18. https://doi.org/10.48550/arXiv.2201.07110
Bogucki, R., Greggila, M., Mallory, P., Feng, J., Siman, K., Khakipoor, B., Smith, A. W. (2019). A 3D-Printable Dual Beam Spectrophotometer with Multiplatform Smartphone Adaptor. Journal of Chemical Education, 96, 1527-1531. https://doi.org/10.1021/acs.jchemed.8b00870
Theremino Spectrometer. Sample Spectrums. January 15, 2024. https://www.theremino.com/wp-content/uploads/files/Theremino_Spectrometer_Spectrums_ENG.pdf
Wenderson, R. F., Willian, T. S., Reis, C., B. dos Santos, V., Carvalho, E. A., Efraim L. Reis, E. L., & Ernando, C. V. (2021). Multifunctional Webcam Spectrophotometer for Performing Analytical Determination and Measurements of Emission, Absorption, and Fluorescence Spectra. Journal of Chemical Education, 98, 1442-1447. https://dx.doi.org/10.1021/acs.jchemed.0c01085
Min, K. P., Kim, J., Song, K. D., & Kim, G. W. (2019). A G-fresnel optical device and image processing based miniature spectrometer for mechanoluminescence sensor applications. Sensors, 19(16), 3528
https://doi.org/10.3390/s19163528
Kolesnichenko, P. V., Eriksson, A., Lindh, L., Zigmantas, D., & Uhlig, J. (2023). Viking Spectrophotometer: A Home-Built, Simple, and Cost-Efficient Absorption and Fluorescence Spectrophotometer for Education in Chemistry. Journal of Chemical Education, 100, 1128-1137. URL: https://doi.org/10.1021/acs.jchemed.2c00679
Yoo, Y., & Yoo, W. S. (2020, November). Turning Image Sensors into Position and Time Sensitive Quantitative Colorimetric Data Sources with the Aid of Novel Image Processing/Analysis Software. Sensors, 20. https://doi.org/10.3390/s20226418
Vasco, R. P., & Stephen, B. H. (2019, June 12). Low-cost (<€5), open-source, potential alternative to commercial spectrophotometers. PLOS Biology, 1-8. URL: https://doi.org/10.1371/journal.pbio.3000321
Camara, C.A. (2021). Construction of a Low-Cost Polarimeter For Educational Purposes. Quimica Vol. 44, №3, 2021. – pp. 361-365.
http://dx.doi.org/10.21577/0100-4042.20170661
Mehta, A., & Greenbowe, T. J. (2011, August). A Shoebox Polarimeter: An Inexpensive Analytical Tool for Teachers and Students. Journal of Chemical Education, 88, 1194-1197.
https://doi.org/10.1021/ed1011635
Vorobiev, D., Ninkov, Z., & Gartley, M. (2014). Polarization in a snap: imaging polarimetry with micropolarizer arrays. In D. B. Chenault, & D. H. Goldstein (Ed.), Polarization: Measurement, Analysis, and Remote Sensing XI, 9099. https://doi.org/10.1117/12.2053164
Vynnyk, O. F., Ghranovsjka, T. Ja., & Kratenko, R. I. (2023). Vysokoshvydkisnyj komp'juternyj poljarymetr na osnovi CMOS matryci. Elektronne naukove fakhove vydannja «Vidkryte osvitnje e-seredovyshhe suchasnogho universytetu», (15), pp.1-17. https://doi.org/10.28925/2414-0325.2023.151
Syniavskyi, I. I., Ivanov, Y. S., Sosonkin, M. G., Milinevsky, G. P., & Koshman, G. (2018). Multispectral imager-polarimeter of the" AEROSOL-UA" space project. Space Science and Technology, 24(3), 23-32.
https://doi.org/10.15407/knit2018.03.023
Jiang, G., Wan, J., Lu, Z., Dou, W., Wang, C., & Lu, Y. (2018, November). Optical design of a refractometer with the liquid prism. In Tenth International Conference on Information Optics and Photonics (Vol. 10964, pp. 343-348). SPIE. https://doi.org/10.1117/12.2505408
Yang, H., Shin, S., Kumar, S., Seo, D., Oh, S., Lee, M., & Seo, S. (2022). A CMOS image sensor based refractometer without spectrometry. Sensors, 22(3), 1209. https://doi.org/10.3390/s22031209
Barrios, C. A. (2022, February). Smartphone-Based Refractive Index Optosensing Platform Using a DVD Grating. Sensors, 22.
https://doi.org/10.3390/s22030903
Robertson, М. W., Wright, М. S., Friedli, A., & Summers, J. (2020). Design and characterization of an ultra-low-cost 3D-printed optical sensor based on Bloch surface wave resonance. Biosensors and Bioelectronics: X, 100049(5), 1-6. https://doi.org/10.1016/j.biosx.2020.100049
Xie, C., Li, C., Ding, X., Jiang, R., & Sung, S. (2021). Chemistry on the cloud: From wet labs to web labs. Journal of chemical education, 98(9), 2840-2847. https://doi.org/10.1021/acs.jchemed.1c00585
Vynnyk , O. F., Komisova , T. Je., & Kratenko , R. I. (2021). Rozrobka proghramno-metodychnogho kompleksu SchoolKit. Elektronne naukove fakhove vydannja «Vidkryte osvitnje e-seredovyshhe suchasnogho universytetu». (11), pp. 32–48. https://doi.org/10.28925/2414-0325.2021.113
Patrick, T., & Clark, J. C. (2006). Visual Basic 2005 Cookbook: Solutions for VB 2005 Programmers. (J. Osborn, Ed.) USA: O'Reilly Media, Inc, pp. 445-448.
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Винник О.Ф., Бутиріна Є.О., Кратенко Р. І.
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.