SAMR TECHNOLOGY OF COMPUTER VISUALIZATION MEANS INTRODUCTION IN THE EDUCATIONAL PROCESS FOR THE FORMATION OF VISUAL AND INFORMATION CULTURE OF FUTURE MATHEMATICS AND COMPUTER SCIENCE TEACHERS
DOI:
https://doi.org/10.28925/2414-0325.2020.8.3Keywords:
technology; computer visualization means; SAMR; visual and informational culture; future mathematics and computer science teachersAbstract
The article substantiates the necessity of introducing computer visualization means in the educational process in order to form a visual and informative culture of future mathematics and informatics teachers by modernizing the system of professional training of such specialists in connection with the tendencies of informatization and visualization of the educational sphere. SAMR technology for implementing such means is described. The proposed technology consists of the following steps. Substitution: computer visualization means replace traditional learning tools. Improvements: computer visualization means replace traditional ones, but its functionality is used more widely. Modification: use of computer visualization means allows redesign the educational process by changing the type of classes, methods and forms of teaching. Rethinking: the use of computer visualization means allows creating the conditions for solving such tasks, which previously could not be solved within traditional approaches. The introduction of computer visualization means into the educational process at the first two stages makes the educational process easier, but does not change it significantly. The improving the quality of educational achievements is possible through the introduction of computer visualization means at the third and fourth stages of SAMR technology. As a result of the introduction of SAMR technology, components of the visual and information culture of future mathematics and informatics teachers are formed, namely, the understanding of the essence of the role of computer visualization means in the educational process and skills of perception, analysis, interpretation, comparison, comparison, creation, integration, formation, formation and the use of visual learning material
Downloads
References
Quality of Worklife Survey. American Federation of Teachers. 2015. URL: http://www.aft.org/sites/default/files/worklifesurveyresults2015.pdf.
Puentedura R. The SAMR Model: Background & Examplars. URL: http://www.hippasus.com/rrpweblog/archives/2012/08/23/SAMR_BackgroundExemplars.pdf.
Кудашов В. И., Думов А. В. Информатизация и цифровизация: сложностный подход к оценке трансформации образования. Профессиональное образование в современном мире, 2019, Т. 9, №4. С. 3176-3186.
Уваров А. Ю. Образование в мире цифровых технологий: на пути к цифровой трансформации. М.: Изд. дом ГУ-ВШЕ, 2018. 168 с.
Wood E., Kidder L., Romrell D. The SAMR model as a framework for evaluating mlearning. Journal of Asynchronous Learning Networks, 2014, V. 18, No 2. P. 1-15.
Hilton J. T. A Case Study of the Application of SAMR and TPACK for Reflection on Technology Integration into Two Social Studies Classrooms. The social studies, 2015, Vol. 107, No. 2. Р. 68-73.
Гриценчук О. О. Розвиток інформаційно-комунікаційної компетентності вчителя у галузі середньої освіти Нідерландів: підходи, моделі, досвід. Інформаційні технології і засоби навчання, 2015, Т. 49, №5. С. 71-81.
Tsybulsky D., Levin I. SAMR Framework for Study Technology Integration in Science Education. International Conference “New Respectives in Science Education”, 2016. URL: https://www.researchgate.net/publication/292138851_SAMR_framework_for_ Study_Technology_Integration_in_Science_Education.
Національна освітня електронна платформа. URL: https://mon.gov.ua/storage/app/media/gromadske-obgovorennya/2018/02/15/BROSHURE_ CONCEPT_ E-BOOK.pdf.
Стрельніков В. Ю., Брітченко І. Г. Сучасні технології навчання у вищій школі : модульний посібник для слухачів авторських курсів підвищення кваліфікації викладачів МІПК ПУЕТ. Полтава : ПУЕТ, 2013. 309 с.
Semenikhina O., Proshkin V., Drushlyak M. Mathematical knowledge control automation within dynamic mathematics programs. E-learning. Vol. 11. E-learning and STEM Education. Monograph. Scientific Editor Eugenia Smyrnova-Trybulska. Katowice-Cieszyn, 2019. P. 571-586.
Князева О. О. Реализация когнитивно-визуального подхода в обучении старшеклассников началам математического анализа: дис. канд. пед. наук / Омский государственный педагогический университет, Омск, 2003. 204 с.
Semenikhina O., Drushlyak M., Zigunova I., Budyanskiy D. Geogebra as means of improving the quality of education. 14th International Conference on ICT in Education, Research, and Industrial Applications: Integration, Harmonization, and Knowledge Transfer (ICTERI 2018). May 14-17, 2018, Kyiv. P. 331-345. URL: http://ceur-ws.org/Vol-2105/10000331.pdf.
Semenikhina O., Drushlyak M. Organization of Experimental Computing in Geogebra 5.0 in Solving Problems of Probability Theory. European Journal of Contemporary Education, 2015, V. 11(1). P. 82-90.
Глотова М. Ю., Самохвалова Е.А. Цифровая таксонометрия Блума и модель цифровой трансформации образования в учебном процессе ВУЗА. Информатика и образование, 2019, №6 (305). С. 42-48.
Anderson L.W., Krathwohl D.R. A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of education objectives. New York: Addison Wesley Longman, 2001.